3+(2x-3)(4x+1)=10(x^2-x)-12x

Simple and best practice solution for 3+(2x-3)(4x+1)=10(x^2-x)-12x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3+(2x-3)(4x+1)=10(x^2-x)-12x equation:



3+(2x-3)(4x+1)=10(x^2-x)-12x
We move all terms to the left:
3+(2x-3)(4x+1)-(10(x^2-x)-12x)=0
We multiply parentheses ..
(+8x^2+2x-12x-3)-(10(x^2-x)-12x)+3=0
We calculate terms in parentheses: -(10(x^2-x)-12x), so:
10(x^2-x)-12x
We add all the numbers together, and all the variables
-12x+10(x^2-x)
We multiply parentheses
10x^2-12x-10x
We add all the numbers together, and all the variables
10x^2-22x
Back to the equation:
-(10x^2-22x)
We get rid of parentheses
8x^2-10x^2+2x-12x+22x-3+3=0
We add all the numbers together, and all the variables
-2x^2+12x=0
a = -2; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·(-2)·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{144}=12$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*-2}=\frac{-24}{-4} =+6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*-2}=\frac{0}{-4} =0 $

See similar equations:

| 6x+29=30+5x | | y-3=3y-7 | | 2x−9=1 | | -30-27x=11x+2 | | X-3/2x-5=3x-4/6x+7 | | x+4÷2x-7=-4÷3 | | x+5÷2x-7=-4÷3 | | T-2/5+5t=7/5-t-2/2 | | 3∙(2x-1)= | | 8-(2x-5)=6(3-x)-57 | | 3×x÷8-x÷6=5 | | 6x-4=7x-8 | | 12-(x-3)=33-(12-2) | | 8-10x=-40-2x | | -9y-8=-4(y-3) | | 7x+15=75-5x | | 1/2x1/4+3=5 | | a+a+a=3*a=3a | | -6x-160=-12 | | 6+14+12+x=48 | | 2x*8=7 | | y=-5/3(-15)-38.33 | | -6x-230=-12 | | 48x5=10x | | 4x+1=2x+46 | | 2/3x+1=x-1/4 | | 6+7+12+x=48 | | x-2=x+8/6 | | 4(x−9)=−48 | | 6x+5-{5x+3-(2x+1)}=6 | | 0=0.12x+0.6 | | -18+x=-30 |

Equations solver categories